Case history Metal’s: modifiche tecniche per migliorare le performance di un progetto

Technical modifications to improve product performance: case study

Alcune modifiche tecniche su un progetto già concordato e avviato da tempo possono migliorare la qualità di un assieme o un semilavorato a livello funzionale, estetico e, non da ultimo, economico. Cambiamenti che coincidono spesso con l’arrivo di nuove tecnologie, sempre più all’avanguardia e performanti.

Quando il parco macchine di Metal’s si arricchisce di una nuova apparecchiatura funzionale al progetto, il nostro ufficio tecnico valuta eventuali implementazioni al lavoro. Prima di proporre al cliente una soluzione alternativa – soprattutto se il processo produttivo è stabile e collaudato nel tempo – quest’ultima viene sempre testata internamente.

Questo è uno dei tanti vantaggi di scegliere Metal’s come unico referente di progetto. Possiamo, infatti, considerare specifiche migliorie in corso d’opera così da perfezionare il prodotto e il risultato finale, nell’interesse del cliente, senza influire sulle tempistiche concordate.

Modifiche tecniche su un progetto già avviato. Tutti i benefici per la produzione spiegati nella nostra case history

Ci capita spesso di proporre modifiche tecniche su una produzione già testata e verificata. Anche se il cliente è soddisfatto delle lavorazioni in atto, in Metal’s ci poniamo sempre nuove sfide. Uno dei nostri obiettivi, infatti, è quello di consigliare strategie mirate per ottimizzare i costi, l’estetica del prodotto o per favorire l’intero ciclo produttivo (anche riducendo le tempistiche di consegna, quando possibile).

In questo caso studio, spieghiamo come è possibile applicare azioni migliorative per ogni progetto e come lo facciamo.

Il caso e il suggerimento in breve: potenziamento dei risultati grazie all’impiego di nuove tecnologie

In Metal’s possiamo suggerire le tecnologie più avanzate per ridurre le spese di produzione, velocizzare le lavorazioni oppure ottenere prodotti migliori rispetto al disegno iniziale.

È questo il caso di due clienti internazionali del settore Food Processing che si affidano da anni a Metal’s per la produzione di forni girarrosti e friggitrici. Abbiamo proposto loro di modificare la tecnologia di lavorazione, passando dalla saldatura tradizionale a quella laser, per trarne tutti i benefici.

La nostra proposta: un aggiornamento nel processo produttivo

In Metal’s disponiamo di un ampio parco macchine che ci consente di applicare lavorazioni e finiture specifiche per l’inox (dalla saldatura alla piegatura, fino alla spazzolatura). In un’ottica di miglioramento aziendale – e per garantire ai nostri clienti l’eccellenza di cui necessitano – ci dotiamo di strumentazioni all’avanguardia. Tutti macchinari che possono affinare il sistema di lavoro e perfezionarlo.

Per due clienti che operano nel settore Food Processing, e che necessitano di saldature particolari e finiture estetiche di alto livello, abbiamo suggerito l’uso della tecnologia a laser.

I vantaggi?

  • versatilità, pulizia e precisione;
  • perfezionamento dell’estetica delle finiture;
  • basso apporto termico (ideale per non deformare il metallo);
  • riduzione degli scarti di materiale;
  • velocità nella lavorazione.
modifiche tecniche per migliorare performance prodotto caso studio

Due casistiche un solo risultato: i vantaggi delle nuove tecnologie per due clienti del Food Processing

Le tecnologie sono in costante evoluzione e consentono di rispondere sempre meglio alle necessità di ogni settore e mercato. Quando capiamo che un macchinario che abbiamo aggiunto al nostro sistema produttivo potrebbe essere un plus per alcuni dei nostri clienti, allora proponiamo loro una soluzione alternativa personalizzata. Nel farlo, rispettiamo tutti gli obiettivi iniziali e mostriamo il risultato finale che potrebbero ottenere attraverso la modifica.

È quello che è successo per due clienti del settore Food Processing che realizzano girarrosti e friggitrici professionali. Ecco cosa abbiamo proposto e il risultato ottenuto.

Caso 1: estetica migliorata con la tecnologia laser

Per un committente straniero produciamo forni girarrosto destinati alla grande distribuzione. Da diversi anni realizziamo questo prodotto con ottimi risultati, con un processo di lavorazione che comprende: la saldatura tradizionale, la passivazione e il decapaggio localizzato, con dei costi già definiti in partenza. Utilizzando sempre di più la saldatura a laser per altri progetti, ci siamo accorti che questa tecnologia poteva migliorarne l’impatto estetico.

Prima di proporre al cliente una soluzione alternativa, abbiamo realizzato diversi test, stressando al massimo il prodotto. Questo ci ha permesso di verificare che si potessero saldare con facilità anche gli spessori fini del manufatto e che il materiale rimanesse il più lineare possibile. Appurato un miglioramento estetico del 70%, abbiamo suggerito al cliente questa nuova tecnica. Approvata la proposta, abbiamo modificato la produzione, introducendo la nuova lavorazione.

Caso 2: funzionalità ottimizzate con il laser

La tecnologia a laser è stata suggerita anche a un altro cliente per cui produciamo da molti anni friggitrici professionali per il settore della ristorazione. Si tratta di un prodotto con saldature molto robuste, capace di rispondere ad elevate esigenze qualitative ed estetiche. Anche in questo caso, abbiamo testato la modifica sul prodotto per verificare le migliorie della nuova procedura rispetto alla precedente. Visti i vantaggi delle saldature a laser (più performanti, senza impatti sull’estetica e con un risparmio interessante sui costi finali) il procedimento è stato rivisto.

L’importanza dei test, da effettuare prima della proposta

Prima di proporre ai clienti eventuali migliorie sui processi di lavorazione, in Metal’s effettuiamo sempre una serie di test specifici. Negli esempi riportati, abbiamo focalizzato la nostra attenzione sulla qualità delle saldature, cercando soluzioni migliorative a livello di funzionalità, velocità, estetica e costi.

Forni girarrosto e friggitrici sono prodotti molto delicati, sottoposti per molto tempo a temperature elevate (e a frequenti lavaggi con acqua fredda). Pur essendo l’acciaio inox un materiale resistente – e ideale per l’ambito alimentare – le continue dilatazioni termiche alle pareti possono costituire un grande problema per chi produce assiemi complessi e/o semilavorati, così come l’uso di oli. Per questo le saldature devono essere stagne, durature, oltre a resistere alle varie sollecitazioni provocate dal caldo.

Prima di suggerire una qualsiasi una modifica, dunque, verifichiamo sempre se c’è un effettivo miglioramento e in quale misura. Effettuiamo differenti prove, dallo stress meccanico a quelle di rottura, riportando al cliente i risultati così da sottolineare gli eventuali vantaggi che otterrebbe grazie alla variazione. Se il cliente accetta il ritocco, proseguiamo poi con la prototipazione e il cambio effettivo.

“In Metal’s ci avvaliamo sempre di nuove tecnologie che possono migliorare un progetto già in corso d’opera. Ne è un esempio la saldatura laser, grazie alla quale possiamo realizzare progetti più performanti a livello estetico, di costi e funzionalità. Effettuiamo test per corroborare le nostre tesi che poi presentiamo ai clienti, mostrando loro i risultati ottenuti. Ovviamente non prendiamo mai nessuna decisione in autonomia: è sempre il cliente a decidere se effettuare o meno le modifiche”. – Luca Regazzo, Responsabile Tecnico Commerciale.

Deformation through stainless steel stamping: what it is and how to use it in your projects

stainless steel stamping

Stainless steel stamping is a process that allows the metal to be shaped into a specific form. It is possible to create geometric profiles, even complex ones, without excessive material waste, while maintaining all the valuable properties of stainless steel.

To perform stamping, advanced machinery is required, along with a deep understanding of the metal and its processing. Each case must be evaluated individually to determine the best options for meeting the specific needs of the target market.

In this article, we will explain in more detail what stainless steel stamping is, its characteristics, advantages, applications, and the differences between hot and cold working processes.

What is stainless steel stamping?

As mentioned earlier, stainless steel stamping is a process that allows the metal to be deformed and/or shaped to achieve a predetermined form through the use of suitable molds, the application of press forces, and the use of other tools applied to the molds (such as punches, for example, which are useful for creating holes, engravings, and embossments).
Stainless steel stamping is carried out on objects of both large and small dimensions, including machine parts or components with varying thicknesses. Cold stamping is often associated with deep drawing, a specific press-working technique that gives the stainless steel sheet a box-like or cup-shaped form.

The advantages of stamping

Stamping allows for the versatile and cost-effective production of semi-finished products, components, and complex assemblies in large quantities, ensuring speed and efficiency. Precision work avoids material waste, thus also reducing the final costs of the entire product transformation process.

Why use it specifically on stainless steel? Because stainless steel is a resistant, durable, and robust metal, well-suited for this type of process. It enables accurate creations that can be adapted to a wide variety of markets, production needs, and customizations.

Sectors of application

Stamping is a rigorous and precise process used in various sectors, including food, automotive, petrochemical, and chemical industries, to name just a few. These are fields where stainless steel is chosen for its undeniable characteristics, such as strength, mechanical resistance, and durability.

Hot and cold stainless steel stamping: what are the differences?

Typically, stainless steel stamping involves several processing stages, including:

  • the creation of a mold that meets the design and shape agreed upon with the client;
  • the installation of the mold onto the machine (along with any accessories);
  • the loading of the steel sheet;
  • the start of the process, which can take place either hot or cold.

In particular, during hot stamping, the metal sheet is subjected to high temperatures. There are various methods to carry out this process. For example, direct hot stamping involves heating the sheet, transferring it onto a cold mold, and then processing it. In indirect hot stamping, the stainless steel undergoes a “heating” process both before and after stamping. This option is primarily used for creating complex geometries or, with the deep-drawing technique, for deep processes such as making ice cream tubs.
On the other hand, with cold stamping, the material is processed at room temperature. Specifically, when hydraulic machines are used, the stainless steel is placed between the punch and the mold, subjecting the material to the deforming force of the presses, achieving even significant depths. This is a faster process, mainly chosen for the production of small components, in series or with varying thicknesses.o soprattutto per la produzione di componenti di piccole dimensioni, in serie o con spessori differenti.

Stainless steel stamping: is cold or hot stamping better?

The choice between these two types of processing can vary depending on whether simple or complex shapes need to be produced. However, it is crucial that this process is performed with precision and expertise. The creation of the mold, in particular, is essential to ensure that every operation is carried out correctly, preventing issues such as production stoppages, waste, and defects in the metal.

stainless steel stamping

Stainless steel stamping: the art of shaping and customizing a component

Thanks to stainless steel stamping, it is possible to create customized components, even in large quantities, with precision and maximum reliability. As mentioned earlier, different machines are used for this process, both hot and cold, and not all companies working with steel have all the necessary equipment to complete every stage of the process.

At Metal’s, however, we have a machine park equipped for stainless steel stamping. Our hydraulic machines boast a pressing power of 1,000 tons, while our mechanical machines can reach up to 400 tons. These are important features that, if necessary, allow us to perform deeper, more precise, and extensive deep-drawing operations without damaging the material (such as causing bends or cracks).

These advanced and professional technologies enable us to meet the growing demands of clients who require specific designs or custom needs. For example, companies operating in the food industry, producing ovens, dishwashers, and other professional equipment for the catering sector. Regarding the preparation and creation of molds, we can work on existing projects—perhaps suggesting possible improvements and implementations—or develop new ones in collaboration with the client and our team of technicians, optimizing costs and streamlining the process.

Stainless steel stamping is typically suited to large-scale production, and once the deep-drawing molds are agreed upon, the process moves swiftly. In this regard, custom molds allow for the production of high-quality, flawless components, significantly speeding up production.

Additionally, the client can opt for other treatments such as pickling and passivation (to remove impurities and improve corrosion resistance), or surface treatments like shot peening and satin finishing (to enhance aesthetics), along with final surface cleaning. These processes can be optional or necessary. For the medical sector, for instance, it is essential that surfaces are treated with brushing, a finish that ensures greater hygienic safety (as indicated in decree no. 269 of December 12, 2007).

This approach is ideal for offering safe products that comply with the regulations in the target market and meet all the client’s requirements. At Metal’s, we can evaluate and agree on these treatments together to achieve all the set goals, optimizing the entire process.

Want to learn more?

Discover why you should rely on our professionals for stainless steel stamping. Request our consultation and evaluate the benefits you can gain for your processes.

Case history Metal’s: saldatura, un processo automatizzato certificato ISO 3834-2

welding a robotized certified process case study

In Metal’s possiamo eseguire commesse con saldatura certificata, per soddisfare le esigenze specifiche dei nostri clienti.

Disponiamo, infatti, di un ampio parco macchine, completo di sistemi automatizzati che ci consentono di certificare determinate lavorazioni, oltre a migliorare la produzione e velocizzare le operazioni per rispettare sempre le tempistiche concordate.

Ponendoci come unico referente, possiamo curare con minuzia ogni dettaglio e suggerire le azioni applicabili per perfezionare un progetto, sia a livello produttivo che dal punto di vista dei costi e della logistica. Uno dei nostri obiettivi, infatti, è quello di ottimizzare l’intero processo rendendo ogni fase sempre più sostenibile, anche per quanto riguarda il trasporto.

In questo caso studio, ti spieghiamo come possiamo fornirti semilavorati e assiemi complessi saldati completi di certificazione. Inoltre, ti illustriamo quali sono i vantaggi di un sistema completamente pianificato e organizzato.

Prodotti saldati certificati e un’organizzazione minuziosa della logistica: una case history Metal’s

Ogni progetto si concretizza dopo la valutazione da parte del nostro ufficio tecnico, anche partendo da un’idea del committente. In questo modo, possiamo esaminarne la fattibilità produttiva e verificare la presenza di eventuali criticità, mantenendo sempre un rapporto attivo e collaborativo. Se necessario, suggeriamo eventuali implementazioni per abbattere i costi, migliorare le tempistiche di produzione o per garantire una maggiore sostenibilità nel trasporto.
È stato così, per esempio, nel caso di un importante cliente del settore Food Processing che necessitava di una soluzione certificata.

Il caso e il suggerimento in breve: necessità di eliminare gli interstizi

Una nota azienda tedesca con distribuzione internazionale ci ha chiesto di realizzare un forno con zone di saldatura stagne, prive di interstizi, in tre dimensioni differenti.

L’obiettivo? Evitare l’annidamento dei residui di cottura nelle aree difficili da pulire (come, per esempio, gli spazi di separazione tra due componenti, gli angoli o le piccole fessure che scatenano l’ossidazione del materiale) e aumentare la vita del prodotto.

La nostra proposta: saldatura robotizzata, mirata e certificata

Per soddisfare le richieste dell’acquirente – compresa la produzione continuativa di circa 6000 pezzi in un anno – abbiamo proposto un processo robotizzato di saldatura interna.Si tratta di una lavorazione precisa, focalizzata sulle zone di funzione dei componenti del forno, che ha ci permesso di chiudere gli interstizidell’accoppiamento (ovvero gli spazi vuoti che si possono formare tra le parti, in cui si può depositare lo sporco o i residui di cottura).

Test e prototipi per un risultato eccellente

Prima di iniziare la produzione in serie, come per ogni progetto, sono necessari test e prototipi, effettuati sul materiale prescelto (in questo caso si trattava di acciaio inox alimentare). Questo ci permette di soddisfare le richieste del cliente, perfezionando le lavorazioni, velocizzandole ed evitando sprechi.

Per la realizzazione dei forni senza interstizi, oltre a una serie di test di verifica – effettuati in Metal’s – il cliente ha svolto in autonomia anche delle prove esterne di durata in un laboratorio specializzato. Questo ha consentito al cliente di simulare la vita del prodotto in base all’uso di destinazione (considerando fattori come: le condizioni di esercizio, l’ambiente di saturazione, l’umidità e la salinità).

L’avvio della produzione

Superate le verifiche preliminari, ci siamo attivati per sviluppare tutta la parte di industrializzazione. In questa fase, abbiamo creato gli stampi per i tre diversi tipi di forno, le attrezzature di piega e di saldatura. Dopo aver predisposto l’intera configurazione del processo di saldatura, ci siamo dedicati all’ottimizzazione del processo di pulizia mediante decappaggio e passivazione localizzata. Il risultato? Un prodotto dalla superficie liscia, capace di prevenire le contaminazioni e con un ulteriore strato protettivo anticorrosivo.

L’importanza delle certificazioni

Uno dei requisiti fondamentali di questo progetto riguarda le certificazioni. Per quanto concerne la saldatura, in Metal’s disponiamo sia delle certificazioni sulla qualità della lavorazione (EN ISO 3834-2:2021) che sui saldatori (UNI EN ISO 9606-1:2017).

“In progetti come questi, con esigenze specifiche e dettagliate, la fase di test e prototipazione è essenziale per capire se si sta andando nella giusta direzione. Serve tempo per sviluppare la parte di industrializzazione, creare gli stampi, le attrezzature e configurare le lavorazioni al meglio, migliorando i tempi produttivi e realizzare un prodotto perfetto. Anche quando il cliente ha le idee chiare sugli obiettivi da raggiungere, un parere esterno può essere utile per ottenere un risultato migliore. Un processo lungo nelle sue prime fasi, ma che va perfezionato in ogni sua sfaccettatura per soddisfare ogni richiesta del committente, strizzando l’occhio alla sostenibilità”. – Luca Regazzo, Responsabile Tecnico Commerciale.

saldatura un processo robotizzato certificato caso studio

Fornitura, magazzino e logistica: un tassello fondamentale per un processo efficiente e sostenibile

In Metal’s offriamo un servizio di gestione completa della supply chain partendo dall’approvvigionamento delle materie prime fino alla spedizione del prodotto. Nell’ottica di una gestione sostenibile, chi si affida a noi come unico referente può contare anche sull’organizzazione delle forniture, del magazzino e dei trasporti.

Contattiamo i fornitori per ottenere i materiali necessari alla produzione, prepariamo uno stock di sicurezza e organizziamo con il cliente le scadenze per l’invio della merce, così da mantenere sempre attiva la catena e far fronte a possibili periodi di stop o emergenze.

Proprio in quest’ottica – e per non sovraccaricare la produzione – realizziamo con largo anticipo i semilavorati, che assembliamo solo quando si avvicina la data di consegna stabilita nel contratto. Questo ci consente di lavorare in anticipo, fornire un servizio di deposito alla nostra clientela e spedire rispettando le tempistiche concordate.
Offriamo la nostra consulenza per trovare l’imballaggio giusto che impedisca al prodotto di danneggiarsi durante il viaggio in container o lungo il trasporto via terra. Inoltre, pianifichiamo la spedizione, ottimizzando gli spazi (e i relativi costi). A tal proposito, preferiamo inviare il prodotto con carico completo, elaborando soluzioni efficaci e sostenibili per ridurre i costi e gli sprechi, valutando anche sovrapposizione sicure di materiale.

Soluzioni rapide in caso di emergenze

Per quanto riguarda il trasporto, bisogna sempre considerare che gli assiemi e i semilavorati sono voluminosi ma molto leggeri.

Per il cliente tedesco abbiamo predisposto le spedizioni in Europa e in Cina, avanzando due risoluzioni differenti. Per l’Europa si è optato per un sistema di sovrapposizione di due modelli di forno all’interno dello stesso container. Per il deposito in Cina, invece, il nostro ufficio tecnico ha studiato un aggancio da applicare al prodotto per riuscire ad inviare tre pezzi anziché due nel medesimo spazio.

Un’opzione che abbiamo dovuto pianificare di nuovo in tempi celeri perché il trasportatore aveva fornito misure diverse del container. Anche in fase di emergenza, a ridosso di una spedizione, ci siamo riassestati in breve tempo, per riorganizzare gli spazi e far partire comunque l’ordine, nei tempi concordati, assicurandoci che la merce fosse ben imballata e protetta. Una soluzione che ci ha permesso di limitare il numero di spedizioni, ridurre i costi e impattare meno sull’ambiente.

Diversificazione dei mercati: l’importanza della supply chain

supply chain for market diversification

La gestione della supply chain aziendale, per la diversificazione dei mercati e la crescita del business, mira all’ottimizzazione e all’efficienza di tutte le attività, dalla produzione alla logistica. Un processo complesso, dinamico, volto a raggiungere il risultato prefissato e che, fase dopo fase, coinvolge diverse figure professionali, coordinate tra loro per una gestione efficace e su misura. Indispensabile per chi opera in più settori e produce nuovi prodotti per differenti mercati, diversificandoli.

Vediamo meglio di cosa si tratta, cos’è la supply chain, perché è bene utilizzarla e qual è il metodo adottato da Metal’s in questo ambito.

Cos’è la supply chain e perché applicarla può fare la differenza

Con supply chain si intendono tutte le attività di coordinamento adottate da un’azienda per gestire e ottimizzare le fasi di tutta la catena di lavorazione, dall’approvvigionamento dei materiali all’invio dell’articolo completo. Questi step possono variare da settore a settore, tra le attività incluse si trovano:

  • la consulenza tecnica;
  • la progettazione;
  • la selezione e l’acquisto delle materie prime;
  • il coordinamento dei fornitori;
  • la produzione;
  • la logistica;
  • la spedizione.

Lo scopo di questa pianificazione è offrire al cliente un prodotto di alta qualità, personalizzato, rafforzando ogni fase del processo. Perché ciò sia possibile – e per aumentare la competitività sul mercato – all’interno dell’ecosistema aziendale vengono coinvolte più figure specializzate, dall’ufficio tecnico ai responsabili del controllo del prodotto.

Gli anelli della supply chain

All’interno di questo procedimento si possono distinguere tre importanti fasi, anche note come “anelli della supply chain”, capaci di garantire un flusso completo e continuo. Si tratta di:

  • approvvigionamento: finalizzato a reperire le materie prime necessarie per soddisfare determinate esigenze aziendali (garantendo la qualità e il giusto prezzo);
  • produzione: in cui si lavorano le materie prime, si assemblano eventuali semilavorati, intervenendo manualmente e meccanicamente sugli articoli, rispettando gli standard concordati;
  • distribuzione: per consegnare il prodotto richiesto dal committente, in sicurezza, velocità e nel rispetto delle regole doganali (se la spedizione avviene all’estero).

Per ottenere i massimi benefici, all’interno di ogni fase occorre agire in modo proattivo e tempestivo, prendendo le giuste decisioni e interpretando le diverse necessità.

In cosa consiste il processo di supply chain?

La supply chain si suddivide in una serie di attività che, come anticipato, coinvolgono più figure e settori. In particolare, prevede il susseguirsi di queste fasi:

  • Pianificazione. Conoscere il mercato in cui si opera e le esigenze del committente, permette di pianificare al meglio l’approvvigionamento delle materie prime e le scorte a magazzino per rispettare i costi (o ridurli se possibile), evitare sprechi ed interruzioni nella catena produttiva.
  • Acquisizione. La corretta scelta e gestione dei fornitori è utile per stabilire e mantenere una relazione di fiducia con loro.
  • Produzione. Comprende tutte le fasi di creazione del prodotto. Personale specializzato e macchinari all’avanguardia – anche automatizzati – sono seguiti da un coordinamento puntuale che ottimizza le performance, in condizioni di lavoro eque e sicure.

Logistica. Dall’imballaggio alla spedizione della merce, tutto è pensato per velocizzare le operazioni nel totale rispetto delle normative (valutando il sistema migliore di trasporto e offrendo la documentazione necessaria da presentare alle Dogane).

I vantaggi della supply chain

Saper gestire la supply chain è vantaggioso perché consente di:

  • ottimizzare i tempi;
  • assicurare le massime performance e la corretta fluidità del processo produttivo;
  • potenziare la scelta di partner e fornitori (valutando chi mostra impegno nell’ambiente e nella sostenibilità);
  • ridurre al minimo gli sprechi (e i costi), allineando la domanda con l’offerta.

Inoltre, la supervisione e il coordinamento di tutte le fasi della catena è utile per prevenire e risolvere eventuali rischi e problemi in maniera tempestiva, senza ripercussioni né rallentamenti sulla produzione e la logistica. La resilienza è un fattore importante per la supply chain che consente, per esempio, di trovare una soluzione rapida nel caso in cui il fornitore abbia un ritardo nella spedizione o gli manchi un componente essenziale. A tal proposito, abbiamo spiegato come siamo riusciti a reperire materiali e componenti in una fase di emergenza in una case history dedicata.

supply chain per la diversificazione dei mercati

Supply chain per la diversificazione dei mercati: cos’è indispensabile oggi

Velocità, flessibilità, precisione ed efficienza sono le parole chiave di chi mira alla diversificazione dei mercati nel 2024. Per essere competitivi e imporsi in nuovi settori – sia che si tratti di assiemi complessi, componentistica o merci semilavorate – servono prodotti performanti, di alta qualità, curati in ogni dettaglio, anche nelle fasi successive alla realizzazione della merce. Bisogna, inoltre, garantire ai clienti la produzione nei tempi concordati, prevenendo eventuali rischi (nell’approvvigionamento delle materie prime, per esempio) offrendo sempre una valida soluzione alternativa.
Coordinare i rapporti con più fornitori di materie prime, offrire lavorazioni diversificate e precise in tempi rapidi, testare la qualità del prodotto e pianificare la logistica sono tutte attività che oggi sono fondamentali per emergere e distinguersi sul mercato. A queste si aggiunge la possibilità di una supply chain sostenibilee responsabile che mira a produrre il minimo impatto ambientale (nel rispetto della Corporate sustainability due diligence directive, nota anche come Supply chain act).

Supply chain: l’approccio di Metal’s per la diversificazione dei mercati

Come abbiamo visto, una supply chain ben studiata offre molti vantaggi. In Metal’s, in particolare, questo processo ci permette di proporci come unici referenti di progetto.

Possiamo gestire, infatti, tutta la catena di fornitura offrendo un servizio completo che comprende: consulenza tecnica, progettazione, coordinamento dei fornitori e acquisto delle materie prime, produzione lean, montaggio e test finale. Seguiamo diversi settori industriali, con soluzioni su misura per rispondere a ogni aspettativa e richiesta, verticalizzando le catene di fornitura.

Ci occupiamo anche della logistica e della movimentazione – stoccando nei nostri magazzini anche merci di grandi dimensioni – consegnando le commesse nello stabilimento del cliente e, se necessario, fornendo un imballaggio sicuro e personalizzato. Per quanto riguarda la spedizione possiamo inviare le commesse sia in Italia che all’estero, seguendo tutte le pratiche burocratiche (anche quelle doganali) con la massima convenienza.

In questo modo i nostri clienti potranno concentrarsi sul loro core business, lasciando a noi il coordinamento della produzione e della logistica degli ordini.

supply chain per la diversificazione dei mercati

Vuoi saperne di più?

Cerchi un partner serio per la gestione completa dei tuoi progetti? Affidati a Metal’s e scopri cosa possiamo fare per te!

Stainless steel in products: how to increase its longevity

increase longevity complex stainless steel assemblies

Increasing the longevity of products and complex assemblies made from stainless steel is crucial for those aiming to offer high-quality products that withstand wear and time.

Steel is composed of varying amounts of metals such as iron and carbon, in addition to nickel and chromium. Chromium, in particular, creates a protective layer (also known as the “passive layer”), which is essential against corrosion. Despite stainless steel being a durable material that does not deteriorate easily, improper maintenance, incorrect cleaning, or an accident can damage the passive layer, ruin the surface, and lead to rust, stains, and even oxidation.

Therefore, it is ideal to act in two phases. The first is preventive, by scheduling one or more targeted and specific treatments during production based on the final use of the product. The second phase concerns post-sales. In this case, the end customer must take care of the stainless steel surface by always performing proper maintenance to make it last longer.

Throughout this article, we will understand the different possibilities for increasing the longevity of stainless steel. Let’s explore them together.

What can compromise the longevity of stainless steel?

Before answering this question, it is important to highlight that stainless steel is an alloy that is:

  • durable;
  • lightweight;
  • easy to clean;
  • low maintenance;
  • highly bacteria-resistant.

These characteristics make it an excellent option for producing high-quality stainless steel products and complex assemblies for various sectors, from the food industry to the pharmaceutical industry.

But how can such a durable alloy be compromised? Various factors can affect its robustness and damage the protective layer. Specifically, there are four different situations to consider:

  • Chemical contamination: Occurs when certain substances (found in chemical products like chlorides, for example, or through contact with saltwater) damage the protective shield of stainless steel, making it susceptible to corrosion.
  • Ferrous contamination: Occurs due to contamination with iron. Iron particles present on a surface or tool can deposit on the stainless steel, triggering galvanic corrosion.
  • Temperature and pollution: High temperatures can affect the quality of the metal and create darker areas on the outermost layer. Additionally, polluted air can contain substances that damage the protective layer and initiate corrosion.
  • Scratches and damages: During maintenance and cleaning, it is always advisable to use suitable products and materials to avoid scratching the protection provided by chromium.
increase longevity complex stainless steel assemblies

Treatments to increase the longevity of stainless steel

To prolong the life of products and complex assemblies made with stainless steel, specific treatments can be considered to enhance stainless steel resistance and integrity.

Depending on various needs, different surface treatments for steel can be chosen, such as:

  • Galvanization: To protect metals from galvanic corrosion.
  • Metallization: To add a layer of material (and extra protection).
  • Anti-corrosion coatings and painting: To improve the resistance and robustness of the alloy with specific treatments and products.

At Metal’s, we can perform localized treatments that maintain the surface characteristics of the steel, which would otherwise be susceptible to erosion. However, these processes are carried out only upon explicit customer request or if required by law. For example, there are specific application sectors, such as the food and medical fields, where certain treatments – like galvanization and pickling by immersion (a localized electrochemical process) – are mandated by regulations.

In particular, complex assemblies designed for the HORECA sector require both brushing and pickling. For example, slicer welds for deli counters need cleaning and pickling in visible areas. However, the customer can request additional product assurance by pickling even the non-visible areas.

The benefits of stainless steel treatments

Whether required by law or requested by the customer, surface treatments on stainless steel offer numerous benefits. Besides increasing durability and resistance to corrosion and oxidation, they help to:

  • uniform the surface;
  • improve the aesthetics of the product;
  • eliminate imperfections, shadows, and other marks;
  • remove impurities.
increase longevity complex stainless steel assemblies

The importance of routine maintenance to increase stainless steel longevity

Surface treatments on stainless steel are a crucial preventive phase that can extend the life of the stainless steel and the product.

The essential step is to always start with a good base product by evaluating only high-quality types of stainless steel. Once the product is manufactured and sold to the end customer, are there still measures to take to prevent potential damage?

Certainly, regular routine maintenance of the product is fundamental, inspecting the product periodically to detect any imperfections, signs of rust, or indications of corrosion. This allows for timely intervention before the material suffers more severe damage.

Additionally, regular deep cleaning of stainless steel surfaces is advisable, which may vary depending on the destination sector (i.e., with specific products and more or less frequent schedules). The recommendation is to use only non-abrasive cleaners and soft cloths to keep the metal surface intact, avoiding scratches as much as possible. It is also crucial to protect stainless steel from contact with corrosive substances (such as chlorides and aggressive chemicals) that can damage it and undermine its resistance and durability.

Want to know more?

Do you want to increase the longevity of your complex stainless steel assemblies and products? Discover how we can assist you: rely on our professionals and evaluate the benefits you can obtain for your processes.

Metal’s ecological footprint and the next steps for the environment

increase longevity complex stainless steel assemblies

The environment is a topic close to our hearts. That’s why in 2024 at Metal’s we have decided to expand our Green Mission by initiating two new sustainability projects:

  • Measuring the Carbon Footprint to calculate the direct and indirect amount of carbon dioxide (CO2) we emit into the atmosphere daily.
  • Developing an LCA tool (Life Cycle Assessment) to understand the environmental impact of Metal’s products throughout their lifecycle.

These ambitious goals were detailed during the presentation of our biennial sustainable development plan, and they will help us offer maximum transparency to our customers and partners regarding our daily activities at Metal’s. In this article, we present the initial results from the Carbon Footprint analysis. The data pertain to the 2023 emissions and are essential for drafting the sustainability plan. Let’s take a look.

Metal’s commitment to sustainability: carbon footprint measurement results 

As mentioned, the Carbon Footprint allows us to precisely determine the CO2 emissions of our organization for the year 2023. The calculation is based on the international “Greenhouse Gas Protocol” (GHGP) standard, a recognized standardized method in the “Corporate Standard” that classifies corporate emissions into 3 categories:

  • Scope 1: Direct emissions of the company, where all energy bill data or purchase invoices are analyzed to calculate the emissions generated by the organization through production processes and the corporate fleet.
  • Scope 2: Indirect emissions where supply contracts and GSE reports (used in photovoltaic systems) are compared to determine emissions originating from an external supplier.
  • Scope 3: Includes all other indirect CO2 emission sources related to the company’s business category (including the entire supply chain, goods transportation, business travel, investments).

Let’s examine the data that emerged for Metal’s, one by one.

Metal's sustainability results 2023 
Category: Corporate

Scope 1: CO2 emissions produced by Metal’s in 2023

The data processing for 2023 revealed that our company emitted 153 tons of CO2. Specifically:

  • 120 tons of natural gas
  • 18 tons of gasoline for vehicles
  • 15 tons of diesel for vehicles

Thus, natural gas, used for heating, contributes 78% to Scope 1 CO2 emissions.

Scope 2: What are the energy consumptions for 2023?

Two different approaches were used to measure the exact value for Scope 2:

  • Location-Based Approach: A traditional method considering the emissions of the energy mix of the region where the company is located (the mix can come from renewable sources, as well as nuclear, gas, or coal). This approach correctly represents the energy actually drawn from the grid.
  • Market-Based Approach: An alternative that considers only the electricity mix of the company’s supplier, not the regional electric grid mix. This approach accounts for the type of energy purchased, considering the potential purchase of renewable energy.

The first methodology best represents the source of energy drawn from the grid but doesn’t highlight alternative and renewable sources; conversely, the second calculation system showcases the company’s efforts towards a green alternative but isn’t exhaustive regarding the regional sources used. For a more complete result, it is best to consider both.

For Metal’s, the Carbon Footprint analysis for Scope 2 revealed the following 2023 emissions:

  • 441 tons of CO2 (Location-Based Approach)
  • 411 tons of CO2 (Market-Based Approach)

Scope 3: The purchase of raw materials is impactful

As anticipated, Scope 3 is based on parameters that vary according to the type of company. For Metal’s, the calculations were divided into two macro-categories:

  • Upstream Emissions: indirect emissions related to the purchase of goods or services (considering transport, waste, production scraps, leased assets, business travel, and commuting).
  • Downstream Emissions: focused on the emissions of sold products (including the transport of finished products to customers, product use, disposal, and investments).

For our organization, the analysis focused on these categories:

  • Purchased goods or services
  • Capital goods
  • Fuel- and energy-related activities
  • Upstream transportation and distribution
  • Waste and production scraps
  • Employee commuting
  • Downstream transportation and distribution

From the results, the Upstream category impacts Scope 3 emissions the most (with 99.6%). Here are the detailed percentages:

  • Purchased goods or services: 89% (mainly due to the purchase of raw materials like steel and auxiliary materials for producing semi-finished and complex assemblies)
  • Upstream transportation and distribution: 6%
  • Employee commuting: 3%
  • Waste and production scraps, fuel- and energy-related activities: 2%

The Downstream category, considering only the activities of transporting and distributing goods produced by Metal’s to the customer, stands at 0.4%.

Focusing on the analysis of Upstream category data:

  • The purchase of raw materials (particularly stainless steel) generated 3010 tons of CO2 (about 82%)
  • Packaging and auxiliary materials (such as paper, cardboard, wood for pallets, plastic for packaging, components for assemblies, abrasives for steel brushing, as well as financial, insurance, management services, maintenance, marketing, and outsourced work) impact 3% and 7% of the emissions linked to purchased materials.

What are the total emissions produced by Metal’s in 2023?

Metal's sustainability results 2023 
Category: Corporate

Summing up Scope 1, 2, and 3, Metal’s total CO2 emissions for 2023 are 4,716 tons. How should these numbers be interpreted, and what can be done to improve? Here are some plausible hypotheses, subject to technical feasibility evaluations in the sustainability plan to be drafted by the end of the year.

1. Finding New Solutions to Reduce Natural Gas Usage

Analyzing Scope 1 emission values (primarily from natural gas for heating and, to a lesser extent, from company vehicles) reveals that this data is relatively low compared to the total (120 tons of CO2 out of 4,716 tons total, including Scopes 1, 2, and 3). 

To improve efficiency, we can consider other ecological heating systems to reduce emissions, such as using electric heat pumps and implementing an electric or hybrid vehicle fleet.

2. Focusing on renewable resources

Scope 2 emissions calculated with the two methods – Location-Based Approach and Market-Based Approach – show that the energy mix of the electricity supplier is already better than that of the national electric grid.

It is still possible to further reduce electricity-related emissions by installing new photovoltaic systems (in addition to those already existing at Metal’s) or purchasing more energy from renewable sources

3. Evaluating the purchase of more sustainable raw materials 

For our company, the major source of CO2 emissions is Scope 3. In this case, steel purchase impacts the final percentage. For raw material procurement, Metal’s already relies on European suppliers and other entities sensitive to sustainability (reflecting our Green Mission). Our goal is to reduce the values identified in the Carbon Footprint. To achieve this, we will work on two fronts:

  • Collaborating with our suppliers to identify products with the lowest environmental impact.
  • Working with our customers to understand the importance of low-emission steel and evaluate their willingness to pay a premium for a sustainable, planet-friendly product.

A final note on waste and production scraps (a category identified within Scope 3). The emission percentage is very low (2%), but this category is strategic. By investing in scrap material, we can produce recycled steel to reduce emissions and increase product circularity.

In conclusion, every action will be decided by the end of the year during the drafting of the sustainability plan.

Want to know more?

If you care about the planet like we do and seek a serious partner already committed to developing sustainable practices, trust Metal’s. We can realize your projects, find out how!

Food-Grade Stainless Steel: What Types?

food-grade stainless stee

When talking about food-grade stainless steel, we refer to a particular alloy of stainless steel used in the beverage and food industry. It is primarily employed in this field because it prevents contamination and offers other significant advantages. But how many types of food-grade stainless steel exist, what are their characteristics, and how do they differ from other materials? In this article, we will answer all these questions.

Food-grade stainless steel: how to recognize it

Various types of stainless steel are available on the market, each suitable for specific industrial processes. In particular, the Centro Inox (Italian Association for the Development of Stainless Steels) identifies two major families:

  • Martensitic Stainless Steel: Durable, but with modest corrosion resistance (recommended for fasteners, cutting tools, and various machinery);
  • Austenitic Stainless Steel: Versatile, heat, and corrosion-resistant (used in the food and medical fields, such as for making stovetops);

Within these broad categories, there are further types of stainless steel that differ in their characteristics and specific properties. To recognize them, the AISI (American Iron and Steel Institute) designation, a nomenclature composed of three digits, is used. Specifically, the first digit determines the class of resistance, and the remaining digits indicate the materials used in the alloy.

Why this classification is necessary? This subdivision is necessary because not all stainless steel is the same. Each variety is characterized by specific properties that make it perfect for certain uses. Additionally, some industrial sectors, such as the food industry, must meet specific requirements. Let’s explore what these are in more detail.

The best types of food-grade stainless steel

When referring to the food and beverage sector, we talk about food-grade stainless steel, a colloquial term used to identify all materials that meet the very high hygiene standards required for these processes. Specifically, two alloys are used in this sector: AISI 316 and AISI 304. Here are the main characteristics and differences.

Food-grade stainless steel AISI 316

AISI 316 is an austenitic stainless steel that contains molybdenum, a transition metal that, when combined with steel, increases its hardenability, hardness, mechanical strength at high temperatures, and corrosion resistance (even when using acids and chlorides such as salt). It is a highly valuable material and withstands temperatures significantly higher than those required during food preparation.

Food-grade stainless steel AISI 304

AISI 304 refers to a stainless steel characterized by a chromium content ranging from 18% to 20% and a nickel content between 8% and 11%. Cheaper than AISI 316, it is often used in the food and beverage sector because it is compatible with most food products (it is better to avoid very acidic and corrosive ones). Additionally, it is notable for its resistance and its ability to withstand both high and low temperatures.

Are there differences between stainless steel and other types of steel?

What distinguishes stainless steel from other types of steel is the presence of chromium. Specifically, to be classified as stainless steel, it must contain at least 10.5% of this valuable chemical element. Its characteristic? Chromium creates a thin, transparent protective layer that enhances the stainless steel’s resistance compared to other steels available on the market.

This is why stainless steel is a more:

  • tough;
  • lightweight and easy to work with (even with laser technologies);
  • corrosion-resistant;
  • heat-resistant;
  • easy to clean and requires low maintenance (capable of ensuring the necessary hygiene for those working daily in the food sector).

Moreover, it does not require additional protective coatings (essential for some steel materials) and has high bacterial removability, preventing and avoiding food contamination through contact with the material.

How to choose the right food-grade stainless steel?

As we have seen, stainless steel is the best alloy for food processing. However, choosing the most suitable type depends entirely on your needs and the final use of the product. Therefore, it is necessary to evaluate, between AISI 316 and 304 stainless steels, which one meets all the necessary requirements. This includes considering the chemical composition of the food (paying attention to potentially corrosive elements) and the temperatures required during heating or refrigeration.

Regarding processing, at Metal’s, we have a constantly updated and state-of-the-art machine park that allows us to successfully complete any project, satisfying all functional, aesthetic, cost, and quality objectives set by the customer. Additionally, we specialize in particular processes such as brushing, essential for eliminating scratches and preserving the hygiene of the material.

At Metal’s, we specialize in processing stainless steel, including food-grade stainless steel. We have chosen to work exclusively with stainless steel to avoid contamination from foreign metals and to offer products that are safe for all food markets. Moreover, when projects involve working with different materials, we operate in separate processing environments to prevent any compromise of the stainless steel’s integrity.

Would you like to know more?

Discover how we can assist you in processing food-grade stainless steel. Trust our professionals and evaluate the benefits you can achieve for your operations.

Metal’s commitment: a biennial plan for sustainable development

Metal's commitment to sustainability and the environment

At Metal’s, commitment to sustainability and the environment remains a top priority throughout 2024. Respect for the planet – and the community in which we operate – is a topic we deeply care about, and there are several projects we intend to undertake to further develop our Green Mission.

Furthermore, in recent years, attention towards these aspects has been very high, both in European and non-European markets. For example, some regulations have been introduced (such as the European directives CSRD and CSDDD to promote responsible corporate behavior towards the environment and human rights), which are pushing companies to move increasingly towards clear and transparent communication regarding environmental, social, and governance issues. Equally important, even the most attentive and demanding customers are interested in the environmental impact of production and the product itself.

For this reason, we have planned a series of initiatives aimed at developing an effective path for sustainable development. A path that we want to embark on from now on, even in the absence of a legal obligation, because we want to anticipate the times, provide our customers with increasingly precise and updated data on our activities, but above all because we want to set concrete goals in terms of ESG development.

The first project we have decided to undertake is aimed at measuring our current environmental impact. This is a fundamental operation to define the starting point for future actions and establish tangible improvement objectives.

So, we started with the calculation of our organization’s CO2 emissions, as well as the development of a tool that calculates the emissions required for the production of our clients’ products.

Metal’s and the environment: commitment for 2024

Indeed, there will be two significant projects in our green journey for the first half of 2024: measuring the company’s Carbon Footprint – started in January 2024 – and developing an LCA tool. All these activities will be carried out with the support of external companies specialized in this field. Let’s see how.

1. Measurement of the company’s Carbon Footprint

The measurement of the Carbon Footprint allows us to calculate the exact amount of carbon dioxide (CO2), both direct and indirect, that we release into the atmosphere every day.
The calculation of company emissions adheres to the international standard ‘Greenhouse Gas Protocol’ (GHGP), a global framework for the measurement and management of greenhouse gas (GHG) emissions derived from the operations of public or private entities. Everything is based on a standardized method – contained in the ‘Corporate Standard‘ guide – that classifies company emissions into categories:

  • Scope 1: corresponds to direct emissions generated by the company through production processes and the company fleet. To obtain the data, we analyze, for example, energy bills, various company invoices, consumption monitoring systems, also evaluating fuel usage and travel distances.
  • Scope 2: represents the data for indirect emissions, generated by an external supplier (both for electricity and thermal energy). To extract the necessary information to calculate it, we compare bills and supply contracts, or proceed with meter readings, inverter readings, and GSE reports (if there are photovoltaic systems).
  • Scope 3: considers all other forms of indirect emissions not included in Scope 2, such as: purchased goods, freight transport, business travel, investments. There are a total of 15 Scope 3 categories, to be evaluated based on the type of business.

The calculation therefore involves all areas of our operations and also involves our suppliers. Therefore, it requires a few months of development, but the results are expected by the end of this month (May 2024).

2. Development of an LCA (Life Cycle Assessment) tool for the products we produce

During the same period, we will also focus on the development of an LCA tool (Life Cycle Assessment). What is it? It’s a very important tool that will allow us to understand the impact of every product created at Metal’s throughout its entire life cycle, from the extraction of steel for semi-finished products (and any other raw materials associated with complex assemblies) to production, transportation, and delivery to our customer.

This way, we will be able to provide our customers with accurate and specific information for each product sold. To calculate the CO2 emissions of each item produced, a series of data will be analyzed. In particular, the tool will evaluate:

  • The type of steel and other materials used; 
  • Internal and external manufacturing processes; 
  • Transportation of raw materials to our facility; 
  • Modes and transportation to our customers.

Again, to ensure the most accurate measurements possible, some operations will directly involve our suppliers.

Sustainability is a topic that we care deeply about

What we have just described is only the beginning of a long journey towards sustainability that we have decided to undertake some time ago and is part of our Green Mission. The real challenge, in the coming years, will be to implement all the necessary measures and interventions to further improve our performance in terms of ESG, namely environmental, social, and governance programs.

Today, at Metal’s, we can be satisfied with our path towards sustainability. In particular, we have:

  • Implemented an environmental management system (in accordance with the guidelines provided by ISO 14001 standards) to ensure constant monitoring of the environmental impact of our activities; 
  • Upgraded our machinery park with increasingly efficient equipment;
  • Installed photovoltaic panels to utilize more energy from renewable sources; 
  • Launched a new plant for nitrogen self-production.
Metal's commitment to sustainability and the environment

In the social sphere, in addition to various welfare tools already in place to support workers and achieve a better work-life balance, we obtained ISO 45001 certification in 2018, which pertains to management systems for occupational health and safety.

But this is not enough for us: as long as there is room for improvement, at Metal’s, we will seek to adopt all necessary practices to do so, involving all stakeholders, both internal and external, with a comprehensive assessment of risks and opportunities in mind.

Do you want to know more? 

If you care about sustainability like we do and are looking for a reliable partner already committed to developing good sustainable practices, trust Metal’s to bring your projects to life.

Metal’s case study: how we improved production with automated processing

Case study: automated processing

At Metal’s, we manufacture assemblies, semi-finished products, parts and components in stainless steel, both simple and complex. We not only process stainless steel but also take care of the design and technical phases, advising our clients on potential improvements to optimize processing times or reduce production costs, obviously without affecting quality. Our work is full of challenges; we go beyond fulfilling our client’s orders and cover the entire logistical process. We always keep to the agreements, the budget and produce (or assemble) the desired quantities on time. In some cases, we even intervene ourselves, suggesting improvements to the client’s project to maximize production efficiency, thus limiting costs and accelerating delivery times.

Improved production efficiency through automated processing: a Metal’s case study

With a view to continuous improvement, whenever possible, we also propose improvements in the production process.

In particular, in the case outlined in this article, you can see how we can intervene to optimize the processing of a product, reducing working times and costs.

The case and the suggestion in brief: a significant modification to the production process to reduce costs and time

For a major client in the food industry, who has been relying on Metal’s for years to manufacture fryers and ovens, we evaluated a change in the welding process.
Prior to the innovation we proposed, this process was artisanal and involved human intervention. Therefore, we suggested a new type of processing that also met the customer’s need to improve the final product, while reducing costs and time.

Our proposal: choosing laser robot welding to reduce time and costs

Our engineering department proposed standardizing the processing by replacing manual labor with faster and cheaper robotic laser welding, and opting for a new interlocking system.

In fact, laser welding does not overheat surfaces as manual welding does, is more precise as it operates on a specific area, and is faster— a superior method for manufacturing fryers and ovens, two products with delicate stress requirements.

Know-how and technology

Having accepted the suggestion, the client was able to enjoy the benefits of choosing an innovative production process without additional investments, resulting in improved products both aesthetically and in terms of functionality.

Testing and prototypes to verify product quality

Before suggesting the automated processing option in this project, our engineering department evaluated all the actual benefits of the proposed solution by simulating different conditions. Through a series of tests, technicians confirmed the production benefits, discarding less convincing options and also evaluating the best choices to be adopted to reduce working time.

Confirmation that the new production process did not alter the appearance or quality of the already marketed products came only with the prototyping of the product. The prototype allowed the client to test the quality of the proposed solution, evaluating its aesthetics, functionality, and stability. Furthermore, we demonstrated that automated processing was faster, reducing potential material waste.

“For this particular project, our technical department took the initiative to show the client the advantages of automation, suggesting the transformation of the current manual process into an automated one. First, we explained to the client the benefits they could gain, both in terms of costs and production speed. The initial concern about this change, driven by uncertainty about the aesthetics and quality of the product, was quickly overcome by creating a prototype that demonstrated the product met all expected standards. The prototype was also useful for verifying the usability of the product, in addition to its robustness and functionality.” – Luca Regazzo, Technical Sales Manager.”

The benefits of automated processing

All modifications – whether requested by the client or proposed by Metal’s technical department – never affect the production process. When evaluating the introduction of a new processing method – as in this case study – or improvements to optimize costs, production, and processes, the processes proceed quickly to always meet the agreed timelines.

In this case, in particular, thanks to automation, times were even improved, and our client was able to benefit from the advantages of automated processing. Laser technology, in particular, offers accuracy, speed, and high processing performance, adapting well to complex surface treatments. Incorporating laser welding into this project allowed us to speed up the entire process, benefiting from more precise processing and reduced material waste, optimizing work quality and costs.

Today, at Metal’s, the machine park is equipped with state-of-the-art equipment, always operational, 24/7. The machine park continues to expand because our goal is to refine processing and provide our clients with the best opportunities in the market. In this case study, we’ve presented an example of what we can do for you with our knowledge and technologies to help you grow and improve your production.

Collaborative robots in the field of mechanical machining

Collaborative robots

Collaborative robots (or cobots) are designed to promote interaction between machines and humans in the production environment.

Conceived in the late 1990s by two professors from Northwestern University, J. Edward Colgate and Michael Peshkin, cobots have become increasingly efficient and safe. The Danish company Universal Robots introduced them to the market in the 2000s, selling the first product in 2008 and thereby paving the way for smart manufacturing.

But how does the collaboration between humans and machines take place? How do they differ from traditional robots? And can they truly enhance production? In this article, we will address all these questions.

Cobot Robot: what they are, differences from robots, and main characteristics

Collaborative cobots are innovative robots designed to facilitate cooperation and interaction between workers and machines. They can lighten the operator’s workload and support them in more risky and heavy tasks.

This collaboration is made possible by some fundamental characteristics that differentiate cobots from traditional robots, such as lightweight design and innovative features including safety sensors. On one hand, these features ease the integration of the machine into the workplace, and on the other hand, they enhance its (artificial) intelligence to improve and maximize productivity by automating almost all operations.

The main differences from traditional robots

Cobots differ from traditional robots in terms of flexibility and lightweight design. Traditional robots are typically massive, heavy, and stationed at a fixed position. They occupy large spaces, and people need to maintain a proper distance from them, respecting the boundaries set by safety barriers.

Collaborative robots, on the other hand, represent a true revolution in the world of industrial robotics. They are light, compact, and designed with an anthropomorphic design that mirrors some human features. For example, some cobots trace the features of the arm in their shapes, even copying its movements.

Cobots, furthermore, involve sharing space with people when the work areas allow it. They have been designed to enable workers to perform various operations in close proximity to the machine, and, following a risk analysis, in most cases, they are implemented without protective barriers, ensuring total safety.

As for productivity, traditional robots excel in handling large volumes but are characterized by high rigidity. Cobots, on the other hand, are flexible and easy to deploy even on different tasks.

The characteristics that make cobots unique

Collaborative robots can be integrated into a work environment more easily compared to traditional robots, which require specific spaces along with the protective barriers we have already mentioned. They are versatile and programmable to perform various tasks, especially strenuous ones, in challenging environments, automating tedious and repetitive operations for the worker.

The proximity between humans and machines is also a plus because it allows combining the worker’s experience with the precision and endurance of the cobot. Both will work on the same components but with different tasks, thereby increasing production and reducing error rates.

Moreover, these mechanical arms, thanks to their compact size, do not alter the production layout and are quick to install. They do not require special electrical modifications. Additionally, thanks to the simple and intuitive programming interface, cobots can seamlessly integrate into an existing production line, and all workers (even those without previous experience in collaborative robotics) can quickly set up their functions.

Finally, cobots consume minimal energy, minimizing waste.

In summary, cobots offer:

  • Innovative design
  • Flexibility
  • Lightweight structure and movements
  • Ease of programming
  • Increased safety
  • Compact size
  • Collaboration with workers

All these features make them unique and excellent allies for increasing productivity.

The “Safety Issue”

The safety of cobots is a topic that deserves further exploration. As mentioned earlier, most collaborative robots do not require the installation of barriers, but precautions are still necessary to ensure the absolute safety of personnel.

One of these precautions is speed limitation, as outlined in the Technical Standard UNI EN ISO 10218-2:2011, included in the Machinery Directive 2006/42/EC. The standard dictates that the cobot should be designed to modify its actions and movements based on human presence. This allows the machine to reduce its speed as soon as a person enters the workspace, returning to normal operation after the person exits.

All of this is made possible by sophisticated and reliable sensors and motion control systems that accurately and promptly detect human presence (and other obstacles) in the work area.
Furthermore, some cobots are equipped with additional safety features, such as a sensitive surface that immediately stops upon contact with people and restrictions on the orientation of tools in case an operator enters a risky area.

Collaborative robotics and industry: what future holds?

The industrial sector is becoming increasingly aware of the positive impact that cobots and, more broadly, collaborative robotics can offer in the workplace.

The collaboration between humans and machines can relieve workers from certain heavy, repetitive, and risky tasks, allowing them to focus on other activities. Additionally, cobots can be implemented in various projects to reduce overall time and costs, not to mention the energy savings in general consumption.

Equipped with highly sensitive sensors, cobots ensure maximum precision in all stages of the manufacturing process, guaranteeing quality and accuracy in production.

This is why the adoption of these new intelligent machines is a growing trend. The Interact Analysis Global Collaborative Robot Market – 2023 study estimates that “the size of the global collaborative robot market is expected to reach $10.8 billion by 2028, with a year-over-year growth of 40.1%.”

Why use cobot robots in the mechanical and metallurgical industries

As highlighted, integrating cobots into the machinery can improve and innovate production, with a primary focus on assisting operators in hazardous or heavy tasks.

Collaborative robotics can be easily employed in various sectors, including mechanical and metallurgical industries. This innovation aligns optimally with the needs of smart manufacturing, facilitating intelligent management of processes and human resources. Moreover, it allows companies to stay abreast of the times, offering products capable of meeting the evolving demands of the market.

In particular, in the mechanical and metallurgical sectors, cobots can enhance the precision of machining, minimizing the risks of errors. They are useful in the following phases:

  • Assembly: for assembling parts made of metal, plastic, and other materials; screwing and fastening various components.
  • Welding: for safely welding components using various methods (including laser technology)
  • Handling: to automate the loading and unloading of materials.

Collaborative robots are, therefore, cutting-edge technology that can improve business performance and the production process, not by replacing humans but by enhancing and refining their work.

In Metal’s, we are finalizing projects that involve the application of cobots to automate various phases of our process, particularly for performing operations such as:

  • MIG and TIG welding
  • Laser welding
  • Brushing
  • Capacitor discharge

Collaborative robotics can perfectly integrate into the existing production line to handle complex tasks requiring a high level of precision and quality. They can relieve operators from more strenuous tasks, improve finishes by increasing precision, and enhance consistency in production, further innovating our machinery.

Would you like to know more?

Rely on Metal’s for your projects: we produce and assemble systems, machines, and complete devices according to your plans, using state-of-the-art machinery to ensure production within agreed timelines.